(懶人包)博士學位口試注意事項及相關表格

親愛的同學們,您好:

恭喜您們即將畢業
雖然在畢業前您們有很多很急的事情需要處理,但下列事項有關您的權益,請您花點時間看看

1.畢業前請先查詢是否以符合下列事項:(請配合博士班研究生入學與修讀辦法)

  • 學分數及必修科目。
  • 已完成助教經驗(生科甲組:一門課程及一門實驗課助教、分醫所一門課程、生科乙組及生資所、生醫科學與工程、產業博不需)。
  • 已通過第一外國語文。
  • 通過非論文研究計畫口試三個月後。(106學年度後入學不需)
  • 二或三篇以上論文且總點數達SCI4.0其中一篇為第一作者。

2.於畢業論文口試兩週前(因學校公文往返申請學位考試委員聘書及口試費用需兩週的時間)填寫學位考試申請表,並將學位考試申請表及論文原創性比對證明、發表論文第一頁等擲交系辦相關事務負責人。
註1:博士班口試委員5-9位(含指導教授【僅支給論文指導費,不再支給委員口試費】,但學校僅最多支付七位委員費用,若超過七位由實驗室自行支付口試委員費用,校內外委員各需超過1/3)
註2:若您論文有涉及人體試驗、動物實驗,敬請檢附相關證明文件。
3.登記借用學位考試場地(請自行於學位考試場地外登記)。

4. 口試以公開舉行為原則,須於事前於系辦登錄口試時間、地點及論文題目。
5.口試當天請先列印口試委員評分表、口試評分總表、學位考試成績資料表及口試審定書,並於當天跟系辦領取校外委員口試費用領據及貴賓停車證。

6.畢業論文口試委員會審定書一份(依照國立陽明交通大學學位論文格式規範)請將你的資料填妥(打字),於口試當天請學位考試委員簽名,以便裝訂於論文前頁,並將正本裝訂於繳交給學校圖書館的論文中。(註:請留意所名的正確性)(生科院下所名:生物科技學系(生科系所合一請勿自行加上研究所)、分子醫學與生物工程研究所、生物資訊及系統生物研究所、生醫科學與工程博士學位學程、跨領域神經科學博士學位學程、生物科技學院產業博士班。)不同所別有不同的審定書請多留意,務必列印您所屬系所的使用版本,且口試委員部分處請空白留給口試委員簽名切勿打字)
 
7. 口試結束後請口試召集人將評分表送至系辦,同學們請將【領據簽單】、【成績資料表】送回系辦。「學位考試成績資料表」第一學期需於1月31日前繳交;第二學期需於7月31日前繳交。

8. 博士學位論文(含摘要)以中文或英文撰寫為原則,並須符合本校學位論文格式規範。請上圖書館國立陽明交通大學博碩士論文全文系統將學位論文書目摘要以及全文電子檔上網建檔。論文審核通過後,需繳交論文三冊(一冊本校圖書館陳列,一冊由國家圖書館收藏,一冊由所上收藏)。紙本論文除涉及機密、專利事項或依法不得提供者得提出相關證明文件至系辦申請延後公開外,否則紙本論文不得延後公開。(https://idm.nycu.ust.edu.tw/sso/886UST_NYCU/oidc/login/?next=/openid/886UST_NYCU/authorize%3Fclient_id%3D702412%26redirect_uri%3Dhttps%3A//etd.lib.nctu.edu.tw/cgi-bin/gs32/tugsweb.cgi/ccd%3D_6w0Zl/idmdispatch%3F%26response_type%3Dcode%26scope%3Dopenid)

註:以圖書館借還書帳號密碼登入

9. 進入校園單一入口(https://portal.nycu.edu.tw/#/login?redirect=%2F)啟動交大校區離校簽核系統,依序請指導教授簽核、繳交一本論文至系辦後系辦簽核、至圖書館繳交一本論文、職涯發展組(線上審核)、駐警隊(線上審核)、最後系統通知請持學生證及論文紙本1本至註冊組(科學一館1樓)領取證書。

11.學位考試通過後,「學位考試成績資料表」若第一學期需於1月31日前繳交;第二學期需於7月31日前繳交給註冊組。學位論文紙本之繳交期限為舉行學位考試日的次學期開學前最後一個工作日,逾期未繳交論文紙本且未達修業年限者,次學期仍應註冊。

12.修業年限屆滿者,未於年限屆滿當學期繳交學位考試成績資料表或未於次學期開學前最後一個工作日前繳交紙本論文,應予退學。

13.系所館舍門卡使用期限至離校手續辦妥隔天為止。
14.國立交通大學學位論文格式規範,請參考本校註冊組網頁。封面顏色為深紅色,樣本請先洽系辦查詢。論文裝訂需採精裝。

最後再次恭喜畢業
以上程序若有疑問
歡迎洽詢系辦羅悅瑜分機56901

學位考試申請表

學位考試申請表下載

國立陽明交通大學學位考試成績資料表下載

博士學位考試成績總表下載

博士學位考試-評分表下載

國立陽明交通大學論文審定同意書-生科系下載

國立陽明交通大學論文審定同意書-分醫所下載

國立陽明交通大學論文審定同意書-生資所下載

國立陽明交通大學論文審定同意書-生醫工博下載

國立陽明交通大學論文審定同意書-產博下載

國立陽明交通大學論文審定同意書-跨領域下載

國立陽明交通大學論文審定同意書英文版下載

國立陽明交通大學生物科技學院112學年度第一學期逕行修讀博士學位開始辦理申請

College of Biological Science and Technology, National Yang Ming Chiao Tung University

112學年度第一學期逕行修讀博士學位開始辦理申請

(11158日公佈)

一、申請資格:

()修讀學士學位應屆畢業生,修業期間成績優異,並具有研究潛力。

()修讀碩士學位學生,修業期間成績優異,並具有研究潛力。

二、報名日期:112515日起至112630日截止。

三、繳交文件:

(一)申請書

(二)助理教授以上推薦函兩份以上,其中一份需由指導教授、系主任或所長推薦。

(三)歷年成績單(含各學期名次證明)

(四)成果摘要(至多A45頁)。

(五) 研究計畫(至多A45頁)。

上述1-5項資料於報名時繳交至系辦,並註明報考所別,否則無法受理。

()口試當天繳交口試報告摘要。

四、逕行修讀博士錄取名額:

    Department of Biological Science and Technology5

    Institute of Bioinformatics and Systems Biology2

    Institute of Molecular Medicine & Bioengineering1

    生物科技學院產學博士班1

    PhD Degree Program of Biomedical Science & Engineering2

五、評分標準:

(一)審查佔50

   (二)口試佔50﹪(其中過去成果佔80﹪,未來研究佔20﹪)

六、口試時間:112711()

七、口試地點:博愛校區賢齊館3

112學年度碩士班考試入學備取生名單及報到注意事項

112學年度碩士班考試入學備取生名單及報到注意事項
即日起至112年5月11日(四)下午3點前 (不含六、日、國定假日)完成報到手續
一、報到地點:新竹市博愛街75號賢齊館325室。
二、報到登記時需攜帶以下資料:大學成績單正本、畢業證書正本(如為應屆畢業生,請填寫切結書)
※未報到者視同放棄,缺額將由備取生依序遞補登記報到。
如欲放棄請填寫回覆放棄聲明書或回覆信件告知。

生科系

4600017備14

Holistic similarity-based prediction of phosphorylation sites for understudied kinases

李宗夷教授研究團隊發表研究成果於Briefings in Bioinformatics

連結網址:https://pubmed.ncbi.nlm.nih.gov/36810579/

Abstract

Phosphorylation is an essential mechanism for regulating protein activities. Determining kinase-specific phosphorylation sites by experiments involves time- consuming and expensive analyzes. Although several studies proposed computational methods to model kinase-specific phosphorylation sites, they typically required abundant experimentally verified phosphorylation sites to yield reliable predictions. Nevertheless, the number of experimentally verified phosphorylation sites for most kinases is relatively small, and the targeting phosphorylation sites are still unidentified for some kinases. In fact, there is little research related to these understudied kinases in the literature. Thus, this study aims to create predictive models for these understudied kinases. A kinase-kinase similarity network was generated by merging
the sequence-, functional-, protein-domain- and ‘STRING’-related similarities. Thus, besides sequence data, protein-protein interactions and functional pathways were also considered to aid predictive modelling. This similarity network was then integrated with a classification of kinase groups to yield highly similar kinases to a specific understudied type of kinase. Their experimentally verified phosphorylation sites were leveraged as positive sites to train predictive models. The experimentally verified phosphorylation sites of the understudied kinase were used for validation. Results demonstrate that 82 out of 116 understudied kinases were predicted with adequate performance via the proposed modelling strategy, achieving a balanced accuracy of 0.81, 0.78, 0.84, 0.84, 0.85, 0.82, 0.90, 0.82 and 0.85, for the ‘TK’, ‘Other’, ‘STE’, ‘CAMK’, ‘TKL’, ‘CMGC’, ‘AGC’, ‘CK1’ and ‘Atypical’ groups, respectively. Therefore, this study demonstrates that web-like predictive networks can reliably capture the underlying patterns in such understudied kinases by harnessing relevant sources of similarities to predict their specific phosphorylation sites.

Artificial intelligence-driven pan-cancer analysis reveals miRNA signatures for cancer stage prediction

何信瑩教授研究團隊發表研究成果於Human Genetics and Genomics Advances

連結網址:https://pubmed.ncbi.nlm.nih.gov/37124139/

Abstract

The ability to detect cancer at an early stage in patients who would benefit from effective therapy is a key factor in increasing survivability. This work proposes an evolutionary supervised learning method called CancerSig to identify cancer stage-specific microRNA (miRNA) signatures for early cancer predictions. CancerSig established a compact panel of miRNA signatures as potential markers from 4,667 patients with 15 different types of cancers for the cancer stage prediction, and achieved a mean performance: 10-fold cross-validation accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of 84.27% ± 6.31%, 0.81 ± 0.12, 0.80 ± 0.10, and 0.80 ± 0.06, respectively. The pan-cancer analysis of miRNA signatures suggested that three miRNAs, hsa-let-7i-3p, hsa-miR-362-3p, and hsa-miR-3651, contributed significantly toward stage prediction across 8 cancers, and each of the 67 miRNAs of the panel was a biomarker of stage prediction in more than one cancer. CancerSig may serve as the basis for cancer screening and therapeutic selection.

Data-Driven Two-Stage Framework for Identification and Characterization of Different Antibiotic-Resistant Escherichia coli Isolates Based on Mass Spectrometry Data

李宗夷教授研究團隊發表研究成果於Microbiology Spectrum

連結網址:https://pubmed.ncbi.nlm.nih.gov/37042778/

Abstract

In clinical microbiology, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) is frequently employed for rapid microbial identification. However, rapid identification of antimicrobial resistance (AMR) in Escherichia coli based on a large amount of MALDI-TOF MS data has not yet been reported. This may be because building a prediction model to cover all E. coli isolates would be challenging given the high diversity of the E. coli population. This study aimed to develop a MALDI-TOF MS-based, data-driven, two-stage framework for characterizing different AMRs in E. coli. Specifically, amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM) were used. In the first stage, we split the data into two groups based on informative peaks according to the importance of the random forest. In the second stage, prediction models were constructed using four different machine learning algorithms-logistic regression, support vector machine, random forest, and extreme gradient boosting (XGBoost). The findings demonstrate that XGBoost outperformed the other four machine learning models. The values of the area under the receiver operating characteristic curve were 0.62, 0.72, 0.87, 0.72, and 0.72 for AMC, CAZ, CIP, CRO, and CXM, respectively. This implies that a data-driven, two-stage framework could improve accuracy by approximately 2.8%. As a result, we developed AMR prediction models for E. coli using a data-driven two-stage framework, which is promising for assisting physicians in making decisions. Further, the analysis of informative peaks in future studies could potentially reveal new insights. IMPORTANCE Based on a large amount of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) clinical data, comprising 37,918 Escherichia coli isolates, a data-driven two-stage framework was established to evaluate the antimicrobial resistance of E. coli. Five antibiotics, including amoxicillin (AMC), ceftazidime (CAZ), ciprofloxacin (CIP), ceftriaxone (CRO), and cefuroxime (CXM), were considered for the two-stage model training, and the values of the area under the receiver operating characteristic curve (AUC) were 0.62 for AMC, 0.72 for CAZ, 0.87 for CIP, 0.72 for CRO, and 0.72 for CXM. Further investigations revealed that the informative peak m/z 9714 appeared with some important peaks at m/z 6809, m/z 7650, m/z 10534, and m/z 11783 for CIP and at m/z 6809, m/z 10475, and m/z 8447 for CAZ, CRO, and CXM. This framework has the potential to improve the accuracy by approximately 2.8%, indicating a promising potential for further research.

Ferroptosis Signature Shapes the Immune Profiles to Enhance the Response to Immune Checkpoint Inhibitors in Head and Neck Cancer

楊慕華教授與林峻宇助理教授團隊共同發表研究成果於Advanced Science

連結網址:https://pubmed.ncbi.nlm.nih.gov/37026630/

Abstract

As a type of immunogenic cell death, ferroptosis participates in the creation of immunoactive tumor microenvironments. However, knowledge of spatial location of tumor cells with ferroptosis signature in tumor environments and the role of ferroptotic stress in inducing the expression of immune-related molecules in cancer cells is limited. Here the spatial association of the transcriptomic signatures is demonstrated for ferroptosis and inflammation/immune activation located in the invasive front of head and neck squamous cell carcinoma (HNSCC). The association between ferroptosis signature and inflammation/immune activation is more prominent in HPV-negative HNSCC compared to HPV-positive ones. Ferroptotic stress induces PD-L1 expression through reactive oxygen species (ROS)-elicited NF-κB signaling pathway and calcium influx. Priming murine HNSCC with the ferroptosis inducer sensitizes tumors to anti-PD-L1 antibody treatment. A positive correlation between the ferroptosis signature and the active immune cell profile is shown in the HNSCC samples. This study reveals a subgroup of ferroptotic HNSCC with immune-active signatures and indicates the potential of priming HNSCC with ferroptosis inducers to increase the antitumor efficacy of immune checkpoint inhibitors.

Menstrual cycle-modulated intrinsic connectivity enhances olfactory performance during periovulatory period

謝仁俊教授研究團隊發表研究成果於Rhinology

連結網址:https://pubmed.ncbi.nlm.nih.gov/37000430/

Abstract

Background: Olfactory capacity increases during the period of ovulation, perhaps as an adjunct to mate selection; however, researchers have yet to elucidate the neural underpinning of menstrual cycle-dependent variations in olfactory performance.

Methodology: A cohort of healthy volunteers (n = 88, grand cohort) underwent testing for gonadal hormone levels and resting-state functional magnetic resonance imaging with a focus on intrinsic functional connectivity (FC) in the olfactory network based on a priori seeds (piriform cortex and orbitofrontal cortex) during the periovulatory (POV) and menstrual (MEN) phases. A subcohort (n = 20, olfaction cohort) returned to the lab to undergo testing of olfactory performance during the POV and MEN phases of a subsequent menstrual cycle.

Results: Olfactory performance and FC were both stronger in the periovulatory phase than in the menstrual phase. Enhanced FC was observed in the network targeting the cerebellum in both the grand and olfaction cohorts, while enhanced FC was observed in the middle temporal gyrus, lingual gyrus, dorsal medial prefrontal cortex, and postcentral gyrus in the grand cohort. Periovulatory progesterone levels in the grand cohort were positively correlated with FC in the network targeting the insula and paracentral lobule.

Conclusion: Our analysis revealed that superior olfactory function in the periovulatory period is associated with enhanced intrinsic connectivity in the olfactory network. These findings can be appreciated in the context of evolutionary biology.

國立陽明交通大學(交大校區)112學年度博士班考試入學招生複試通知

    國立陽明交通大學(交大校區)112學年度博士班考試入學招生複試通知

 

    第一階段甄選通過名單如下,請同學依下列複試時間表所列之時間提前30分   鐘,到本校參加第二階段複試。複試時請攜帶身分證正本及本通知單於複試前至本校博愛校區賢齊館327室辦理報到。

 

                 國立陽明交通大學(交大校區) 生物科技學院 試務工作小組

                                                                     中華民國112年4月24日

112學年度生科院博士班甄試入學考試口試時間表

日期

112年4月29日(星期六)

地點

博愛校區賢齊館327室

時間

考生編號

時間

考生編號

09:30

3500010

11:30

3500004

09:50

3500009

11:50

3500003

10:10

3500008

12:10

3500002

10:30

3500007

12:30

3500001

10:50

3500006

12:50

3560001

11:10

3500005

 

 

備註:

           

1.每位考生簡報及口試時間共20分鐘,簡報10分鐘(包括過去專題實驗或研究報告),回答老師問題10分鐘。

2.簡報使用單槍投影機,簡報內容請以PowerPoint 格式呈現,簡報檔案必須於112 年4 月27 日前至https://forms.gle/Fa6LcQNRFWSwP7Cm8上傳資料,檔名為考生編號+姓名。

               

Download (DOC, 12.63MB)

en_US