Author Archives: gdkm04

Gene set correlation enrichment analysis for interpreting and annotating gene expression profiles

林峻宇副教授研究團隊發表研究成果於Nucleic Acids Res

連結網址:https://pubmed.ncbi.nlm.nih.gov/38096046/

Abstract

Pathway analysis, including nontopology-based (non-TB) and topology-based (TB) methods, is widely used to interpret the biological phenomena underlying differences in expression data between two phenotypes. By considering dependencies and interactions between genes, TB methods usually perform better than non-TB methods in identifying pathways that include closely relevant or directly causative genes for a given phenotype. However, most TB methods may be limited by incomplete pathway data used as the reference network or by difficulties in selecting appropriate reference networks for different research topics. Here, we propose a gene set correlation enrichment analysis method, Gscore, based on an expression dataset-derived coexpression network to examine whether a differentially expressed gene (DEG) list (or each of its DEGs) is associated with a known gene set. Gscore is better able to identify target pathways in 89 human disease expression datasets than eight other state-of-the-art methods and offers insight into how disease-wide and pathway-wide associations reflect clinical outcomes. When applied to RNA-seq data from COVID-19-related cells and patient samples, Gscore provided a means for studying how DEGs are implicated in COVID-19-related pathways. In summary, Gscore offers a powerful analytical approach for annotating individual DEGs, DEG lists, and genome-wide expression profiles based on existing biological knowledge.

Subdomain dynamics enable chemical chain reactions in non-ribosomal peptide synthetases

朱智瑋教授研究團隊發表研究成果於Nature Chemistry

連結網址:https://www.nature.com/articles/s41557-023-01361-4

Abstract

Many peptide-derived natural products are produced by non-ribosomal peptide synthetases (NRPSs) in an assembly-line fashion. Each amino acid is coupled to a designated peptidyl carrier protein (PCP) through two distinct reactions catalysed sequentially by the single active site of the adenylation domain (A-domain). Accumulating evidence suggests that large-amplitude structural changes occur in different NRPS states; yet how these molecular machines orchestrate such biochemical sequences has remained elusive. Here, using single-molecule Förster resonance energy transfer, we show that the A-domain of gramicidin S synthetase I adopts structurally extended and functionally obligatory conformations for alternating between adenylation and thioester-formation structures during enzymatic cycles. Complementary biochemical, computational and small-angle X-ray scattering studies reveal interconversion among these three conformations as intrinsic and hierarchical where intra-A-domain organizations propagate to remodel inter-A–PCP didomain configurations during catalysis. The tight kinetic coupling between structural transitions and enzymatic transformations is quantified, and how the gramicidin S synthetase I A-domain utilizes its inherent conformational dynamics to drive directional biosynthesis with a flexibly linked PCP domain is revealed.

Holothurian triterpene glycoside cucumarioside A2-2 induces macrophages activation and polarization in cancer immunotherapy

王雲銘教授研究團隊發表研究成果於 Cancer Cell International

連結網址:https://pubmed.ncbi.nlm.nih.gov/38001420/

Abstract

Background: Despite intensive developments of adoptive T cell and NK cell therapies, the efficacy against solid tumors remains elusive. Our study demonstrates that macrophage-based cell therapy could be a potent therapeutic option against solid tumors.

Methods: To this end, we determine the effect of a natural triterpene glycoside, cucumarioside A2-2 (CA2-2), on the polarization of mouse macrophages into the M1 phenotype, and explore the antitumor activity of the polarized macrophage. The polarization of CA2-2-pretreated macrophages was analyzed by flow cytometry and confocal imaging. The anti-cancer activity of CA2-2 macrophages was evaluated against 4T1 breast cancer cells and EAC cells in vitro and syngeneic mouse model in vivo.

Results: Incubation of murine macrophages with CA2-2 led to polarization into the M1 phenotype, and the CA2-2-pretreated macrophages could selectively target and kill various types of cancer in vitro. Notably, loading near-infrared (NIR) fluorochrome-labeled nanoparticles, MnMEIO-mPEG-CyTE777, into macrophages substantiated that M1 macrophages can target and penetrate tumor tissues in vivo efficiently.

Conclusion: In this study, CA2-2-polarized M1 macrophages significantly attenuated tumor growth and prolonged mice survival in the syngeneic mouse models. Therefore, ex vivo CA2-2 activation of mouse macrophages can serve as a useful model for subsequent antitumor cellular immunotherapy developments.

Keywords: Anticancer; Cucumarioside A2-2; Holothurian triterpene glycoside; Immunotherapy; M1 macrophage.

Single-Cell Meta-Analysis of Neutrophil Activation in Kawasaki Disease and Multisystem Inflammatory Syndrome in Children Reveals Potential Shared Immunological Drivers

柯泰名副教授研究團隊發表研究成果於Circulation

連結網址:https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.123.064734

Abstract

BACKGROUND:

Kawasaki disease (KD) and multisystem inflammatory syndrome in children (MIS-C) share similar clinical manifestations, including cardiovascular complications, suggesting similar underlying immunopathogenic processes. Aberrant neutrophil activation may play a crucial role in the shared pathologies of KD and MIS-C; however, the associated pathogenic mechanisms and molecular drivers remain unknown.

 

METHODS:

We performed a single-cell meta-analysis of neutrophil activation with 103 pediatric single-cell transcriptomic peripheral blood mononuclear cell data across 9 cohorts, including healthy controls, KD, MIS-C, compared with dengue virus infection, juvenile idiopathic arthritis, and pediatric celiac disease. We used a series of computational analyses to investigate the shared neutrophil transcriptional programs of KD and MIS-C that are linked to systemic damage and cardiac pathologies, and suggested Food and Drug Administration–approved drugs to consider as KD and MIS-C treatment.

 

RESULTS:

We meta-analyzed 521 950 high-quality cells. We found that blood signatures associated with risks of cardiovascular events are enriched in neutrophils of KD and MIS-C. We revealed the expansion of CD177+ neutrophils harboring hyperactivated effector functions in both KD and MIS-C, but not in healthy controls or in other viral-, inflammatory-, or immune-related pediatric diseases. KD and MIS-C CD177+ neutrophils had highly similar transcriptomes, marked by conserved signatures and pathways related to molecular damage. We found the induction of a shared neutrophil expression program, potentially regulated by SPI1 (Spi-1 proto-oncogene), which confers enhanced effector functions, especially neutrophil degranulation. CD177 and shared neutrophil expression program expressions were associated with acute stages and attenuated during KD intravenous immunoglobulin treatment and MIS-C recovery. Network analysis identified hub genes that correlated with the high activation of CD177+ neutrophils. Disease-gene association analysis revealed that the KD and MIS-C CD177+ neutrophils’ shared expression program was associated with the development of coronary and myocardial disorders. Last, we identified and validated TSPO (translocator protein) and S100A12 (S100 calcium-binding protein A12) as main molecular targets, for which the Food and Drug Administration–approved drugs methotrexate, zaleplon, metronidazole, lorazepam, clonazepam, temazepam, and zolpidem, among others, are primary candidates for drug repurposing.

 

CONCLUSIONS:

Our findings indicate that CD177+ neutrophils may exert systemic pathological damage contributing to the shared morbidities in KD and MIS-C. We uncovered potential regulatory drivers of CD177+ neutrophil hyperactivation and pathogenicity that may be targeted as a single therapeutic strategy for either KD or MIS-C.

Dynamics of Nanocomposite Hydrogel Alignment during 3D Printing to Develop Tissue Engineering Technology

李明家副教授研究團隊發表研究成果於Biomacromolecules

連結網址:https://pubs.acs.org/doi/10.1021/acs.biomac.3c00522

Abstract

Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.

Enhancing Efficacy of Albumin-Bound Paclitaxel for Human Lung and Colorectal Cancers through Autophagy Receptor Sequestosome 1 (SQSTM1)/p62-Mediated Nanodrug Delivery and Cancer therapy

趙瑞益教授研究團隊發表研究成果於ACS Nano

連結網址:https://pubmed.ncbi.nlm.nih.gov/37737568/

Abstract

Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.

Controlling Circularly Polarized Luminescence Using Helically Structured Chiral Silica as a Nanosized Fused Quartz Cell

李明家副教授研究團隊發表研究成果於JACS Au,並獲選該期刊封面故事。

連結網址:https://pubs.acs.org/doi/10.1021/jacsau.3c00390

Abstract

Circularly polarized luminescence (CPL) is typically achieved with a chiral luminophore. However, using a helical nanosized fused quartz cell consisting of chiral silica, we could control the wavelength and helical sense of the CPL of an achiral luminophore. Chiral silica with a helical nanostructure was prepared by calcining a mixture of polyhedral oligomeric silsesquioxane (POSS)-functionalized isotactic poly(methacrylate) (it-PMAPOSS) and a small amount of chiral dopant. The chiral silica encapsulated functional molecules, including luminophores, along the helical nanocavity, leading to induced circular dichroism (ICD) and induced circularly polarized luminescence (iCPL). Because chiral silica can act as a helical nanosized fused quartz cell, it can encapsulate not only the luminophore but also solvent molecules. By changing the solvent in the luminophore-containing nanosized fused quartz cell, the wavelength of the CPL was controlled. This method provides an effective strategy for designing novel CPL-active materials.

Sustained Releasable Copper and Zinc Biogenic Ions Co-Assembled in Metal-Organic Frameworks Reinforced Bacterial Eradication and Wound Mitigation in Diabetic Mice

王雲銘教授研究團隊發表研究成果於 Bioconjugate Chemistry

連結網址:https://pubmed.ncbi.nlm.nih.gov/37552618/

Abstract

The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.

Neuroprotective Effect of NO-Delivery Dinitrosyl Iron Complexes (DNICs) on Amyloid Pathology in the Alzheimer’s Disease Cell Model

王雲銘教授及高智飛副教授研究團隊發表研究成果於 ACS Chemical Neuroscience

連結網址:https://pubmed.ncbi.nlm.nih.gov/37533298/

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. β-amyloid1-42(Aβ1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aβ aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(μ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aβ1-42. This study found that DNIC-COOH protected neuronal cells from Aβ-induced cytotoxicity, potentiated neuronal functions, and facilitated Aβ1-42 degradation through the NO-sGC-cGMP-AKT-GSK3β-CREB/MMP-9 pathway.

Keywords: Alzheimer’s disease; amyloid pathology; dinitrosyl iron complexes; nitric oxide.

en_US